
Flow Aggregation for Enhanced TCP over
Wide-Area Wireless

Rajiv Chakravorty, Sachin Katti, Jon Crowcroft, Ian Pratt
{firstname.lastname}@cl.cam.ac.uk

University of Cambridge Computer Laboratory,
JJ Thomson Avenue, Cambridge CB3 0FD, U.K.

Abstract— Throughout the world, GSM cellular mobile net-
works are being upgraded to support the “always-on” General
Packet Radio Service (GPRS). Despite the apparent availability of
levels of bandwidth not dissimilar to that provided by conventional
fixed-wire telephone modems, the user experience using GPRS is
currently considerably worse.

In this paper we examine the performance of TCP and HTTP
over GPRS, and show how certain network characteristics interact
badly with TCP to yield problems such as: link under-utilization
for short-lived flows, excess queueing for long-lived flows, ACK
compression, poor loss recovery, and gross unfairness between
competing flows.

We present the design and implementation of a transparent
TCP proxy that mitigates many of these problems without requir-
ing any changes to the TCP implementations in either mobile or
fixed-wire end systems.

The proxy transparently splits TCP connections into two halves,
the wired and wireless sides. Connections destined for the same
mobile host are treated as an aggregate due to their statistical de-
pendence. We demonstrate packet scheduling and flow control
algorithms that use information shared between the connections
to maximise performance of the wireless link while inter-working
with unmodified TCP peers. We also demonstrate how fairness
between flows and response to loss is improved, and that queueing
and hence network latency is reduced. We conclude that installing
such a proxy into GPRS network would be of significant benefit to
users.

I. INTRODUCTION

World over, GSM cellular networks are being upgraded to
support the General Packet Radio Service (GPRS). GPRS offers
“always on” connectivity to mobile users, with wide-area cover-
age and data rates comparable to that of conventional fixed-line
telephone modems. This holds the promise of making ubiqui-
tous mobile access to IP-based applications and services a real-
ity.

However, despite the momentum behind GPRS, surpris-
ingly little has been done to evaluate TCP/IP performance over
GPRS. There are some interesting simulation studies [1], [4],
but we have found actual deployed network performance to be
somewhat different.

Some of the performance issues observed with GPRS are
shared with wireless LANs like 802.11b, satellite systems, and
other wide-area wireless schemes such as Metricom Ricochet
and Cellular Digital Packet Data (CDPD). However, GPRS

Sachin Katti is a final year BTech student in the Department of Electrical
Engineering at the Indian Institute of Technology (IIT), Mumbai. He interned
at the University of Cambridge Computer Laboratory during summer 2002.

presents a particularly challenging environment for achieving
good application performance.

In this paper, we present our practical experiences using
GPRS networks, and our attempts to improve their perfor-
mance. In section II we briefly report on work to character-
ize GPRS link behaviour (see [30] for a fuller treatment). Sec-
tion III identifies particular problems experienced by TCP run-
ning over GPRS, and examines how these are exacerbated by
application-layer protocols such as HTTP.

In section IV we introduce the design of our TCP proxy,
which is inserted into the network near the wired-wireless bor-
der and aims to transparently improve the performance of TCP
flows running over the network without requiring modifications
to either the wired or wireless end systems. In particular, we
demonstrate how there are significant advantages to treating all
TCP flows to a particular mobile host as an aggregate, taking
advantage of the flows’ statistical dependence to perform better
scheduling and flow control in order to maximise link utiliza-
ton, reduce latency, and improve fairness between flows.

Sections V and VI describe the experimental setup and
present an evaluation of our proxy’s performance. The pa-
per goes on to discuss related work, and how flow aggregation
could be added as an extension to existing TCP implementa-
tions.

II. GPRS NETWORK CHARACTERIZATION

GPRS [1], [2], [3], like other wide-area wireless networks,
exhibits many of the following characteristics: low and fluc-
tuating bandwidth, high and variable latency, and occasional
link ‘blackouts’ [7], [8], [9]. To gain clear insight into the
characteristics of the GPRS link, we have conducted a series
of link characterization experiments. A comprehensive report
on GPRS link characterization is available in the form of a
separate technical report [30]. Below, we enunciate some key
findings:

High and Variable Latency:- GPRS link latency is very
high, 600ms-3000ms for the downlink and 400ms-1300ms on
the uplink. Round-trip latencies of 1000ms or more are typi-
cal. The delay distribution is shown in figure 1. The link also
has a strong tendency to ‘bunch’ packets; the first packet in a
burst is likely to be delayed and experience more jitter than fol-
lowing packets. The additional latency for the first packet is
typically due to the time taken to allocate the temporary block

0-7803-7753-2/03/$17.00 (C) 2003 IEEE 1754

flow (TBF) [28], [29]. Since most current GPRS terminals allo-
cate and release TBFs immediately (implementation based on
GPRS 1997 release), protocols (such as TCP) that can trans-
fer data (and ack) packets spaced in time may end up creating
many small TBFs that can each add some delay (approx. 100-
200ms) during data transfer. The latest release (GPRS 1999)
does consider an extended TBF life-time; however, this opti-
mization can lead to inefficient scheduling at the base station
controller (BSC), with some improvement (∼100ms) in overall
RTTs [28].

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6

D
e
la

y
 D

is
tr

ib
u
ti

o
n

Packet Delays (secs)

Downlink Delay Distribution

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6
Packet Delays (secs)

D
e
la

y
 D

is
tr

ib
u

ti
o

n

Uplink Delay Distribution

Fig. 1. Single packet time-in-flight delay distribution plots showing (a) down-
link delay (b) uplink delay distribution. Measurements involved transfer of
1000 packets with random intervals > 4s between successive packet transfers.

Fluctuating Bandwidth:- We observe that signal quality
leads to significant (often sudden) variations in perceivable
bandwidth by the receiver. Sudden signal quality fluctuations
(good or bad) commensurately impact GPRS link performance.
Using a “3+1” GPRS phone such as the Ericsson T39 (3
downlink channels, 1 uplink), we observed a maximum raw
downlink throughput of about 4.15 KB/s, and an uplink
throughput of 1.4 KB/s. Using a “4+1” phone, the Motorola
T280, we measured an improved maximum bandwidth of
5.5 KB/s in the downlink direction. Conducting these tests at
various times of the day and at different locations revealed no
evidence of network (channel) contention occurring. This is
perhaps to be expected due to the currently small number of
GPRS users and the generous time slot provisioning employed
by most operators.

Packet Loss:- The radio link control (RLC) layer in GPRS
uses an automatic repeat request (ARQ) scheme that works ag-
gressively to recover from link layer losses. Thus, higher-level
protocols (like IP) rarely experience non-congestive losses.

Link Outages:- Link outages are common while moving at
speed or, obviously, when passing through tunnels or other ra-
dio obstructions. Nevertheless, we have also noticed outages
during stationary conditions. The observed outage interval will
typically vary between 5 and 40s. Sudden signal quality degra-
dation, prolonged fades and intra-zone handovers (cell reselec-
tions) can lead to such link blackouts. When link outages are
of small duration, packets are justly delayed and are lost only
in few cases. In contrast, when outages are of higher duration
there tend to be burst losses.

Occasionally, we also observed downlink transfers to stop al-
together during transfers. We believe this to be a specific case
of link-reset, where a mobile terminal would stall and stop lis-

tening to its TBF. We believe this to be due to inconsistent timer
implementations within mobile terminals and base station con-
trollers (BSCs). Recovering from such cases required the PPP
session to be terminated and restarted.

III. TCP PERFORMANCE OVER GPRS

In this section we discuss TCP performance problems over
GPRS. In particular, we concentrate on connections where the
majority of data is being shipped in the downlink direction,
as this corresponds to the prevalent behaviour of mobile
applications, such as web browsing, file download, reading
email, news etc. We provide a more complete treatment on
TCP problems over GPRS in [7].

TCP Start-up Performance:- Figure 2(a) shows a close up
of the first few seconds of a connection, displayed alongside
another connection under slightly worse radio conditions. An
estimate of the link bandwidth delay product (BDP) is also
marked, approximately 10KB. This estimate is approximately
correct under both good and bad radio conditions, as although
the link bandwidth drops under poor conditions the RTT tends
to rise. For a TCP connection to fully utilize the available link
bandwidth, its congestion window must be equal or exceed the
BDP of the link. We can observe that in the case of good radio
conditions, it takes about 6 seconds from the initial connection
request (TCP SYN) to ramp the congestion window up to
the link BDP. Hence, for transfers shorter than about 18KB,
TCP fails to even exploit the meagre bandwidth that GPRS
makes available to it. Since many HTTP objects are smaller
than this size, the effect on web browsing performance can be
substantial.

link BDP (approx.)

(12 seg., 6+ sec)
(14 seg., 9+ sec)

Good Link Conditions

Poor Radio Conditions

0

2000

4000

6000

8000

10000

12000

14000

0 2 4 6 8 10 12 14
Time (sec)

O
u

ts
ta

n
d

in
g

 D
a

ta
 (

b
y

te
s)

Receiver Adv. Window

Congestion Avoidance

Slow Start

Data Segments (Pushed)

Receiver ACK trace

Consequence of ACK compression

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 10 20 30 40 50 60 70 80 90

S
e
q

u
e
n

c
e
 O

ff
se

t

Time (sec)

Fig. 2. Plot (a) shows that slow-start takes over 6 seconds to expand the
congestion window sufficiently to enable the connection to utilise the full link
bandwidth. (b) shows the characteristic exponential congestion window growth
due to slow-start (SS).

ACK Compression:- A further point to note in figure 2(b) is
that the sender releases packets in bursts in response to groups
of four ACKs arriving in quick succession. Receiver-side
traces show that the ACKs are generated in a smooth fashion
in response to arriving packets. The ‘bunching’ on the uplink
is due to the GPRS link layer (see, [9]). This effect is not
uncommon, and appears to be an unfortunate interaction that
can occur when the mobile terminal has data to send and
receive concurrently. ACK bunching or compression [15] not
only skews upwards the TCP’s RTO measurement but also
affects its self-clocking strategy. Sender side packet bursts can

1755

Retransmit (after 3rd dupack)

24 dupacks from pkts inflight

Receiver Adv. Window

(Drain Time = 30 secs)

Segment and Ack Trace

0

100000

200000

300000

400000

500000

600000

700000

00:0000:00 01:0001:00 02:0002:00 03:0003:00 04:0004:00 05:

S
e
q
u
e
n
c
e
 O

ff
s
e
t

Time(min)

Link Drain Time = 30 secs

link BDP (approx.)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

00:0000:00 01:0001:00 02:0002:00 03:0003:00 04:0004:00 05:

O
u

ts
ta

n
d

in
g

 D
a
ta

 (
b

y
te

s
)

Time(min)

Fig. 3. Case of timeout due to a dupack(sack). Plot (a) shows the sender
sequence trace and (b) shows corresponding outstanding data.

further impair RTT measurements.

Excess Queuing:- Due to its low bandwidth, the GPRS link
is almost always the bottleneck of any TCP connection, hence
packets destined for the downlink get queued at the gateway
onto the wireless network (known as the CGSN node in GPRS
terminology, see figure 8). However, we found that the existing
GPRS infrastructure offers substantial buffering: UDP burst
tests indicate that over 120KB of buffering is available in the
downlink direction. For long-lived sessions, TCP’s congestion
control algorithm could fill the entire router buffer before
incurring packet loss and reducing its window. Typically, how-
ever, the window is not allowed to become quite so excessive
due to the receiver’s flow control window, which in most TCP
implementations is limited to 64KB unless window scaling
is explicitly enabled. Even so, this still amounts to several
times the BDP of unnecessary buffering, leading to grossly
inflated RTTs due to queueing delay. Figure 3 (b) shows a TCP
connection in such a state, where there is 40KB of outstanding
data leading to a measured RTT of tens of seconds. Excess
queueing exacerbates other issues:

RTT Inflation - Higher queueing delays can severely degrade
TCP performance [10]. A second TCP connection established
over the same link is likely to have its initial connection request
time-out [5].
Inflated Retransmit Timer Value - RTT inflation results in an

inflated retransmit timer value that impacts TCP performance,
for instance, in cases of multiple loss of the same packet [5].
Problems of Leftover (Stale) Data - For downlink channels,

the queued data may become obsolete when a user aborts a web
download and abnormally terminates the connection. Draining
leftover data from such a link may take many seconds.
Higher Recovery Time - Recovery from timeouts due to

dupacks (or sacks) or coarse timeouts in TCP over a saturated
GPRS link takes many seconds. This is depicted in figure 3(a)
where the drain time is about 30s.

TCP loss recovery over GPRS:- Figure 3(a)-(b) depicts
TCP’s performance during recovery due to reception of a
dupack (in this case a SACK). Note the long time it takes TCP
to recover from the loss, on account of the excess quantity of
outstanding data. Fortunately, use of SACKs ensures that pack-
ets transferred during the recovery period are not discarded,
and the effect on throughput is minimal. This emphasises

the importance of SACKs in the GPRS environment. In this
particular instance, the link condition happened to improve
significantly just after the packet loss, resulting in higher
available bandwidth during the recovery phase.

0

20000

40000

60000

80000

100000

120000

00:0000:00 01:0001:00 02:0002:00

S
e
q

u
e
n

c
e
 O

f
f
s
e
t

Time

f1

f2

Receiver Adv. Window

Ack Trace

Data Segments Pushed
Initial Connection Timeout

0

100000

200000

300000

400000

500000

600000

700000

00:0000:00 01:0001:00 02:0002:00 03:0003:00 04:0004:00 05:00

S
e
q

u
e
n

c
e
 O

ff
s
e
t

Time (min)

Fig. 4. Close-up of time sequence plots for two concurrent file transfers over
GPRS, where f2 was initiated 10 seconds after f1.

Fairness between flows:- Excess queueing can lead to gross
unfairness between competing flows. Figure 4 shows a file
transfer (f2) initiated 10 seconds after transfer (f1). When TCP
transfer (f2) is initiated, it struggles to get going. In fact it
times out twice on initial connection setup (SYN) before be-
ing able to send data. Even after establishing the connection,
the few initial data packets of f2 are queued at the CGSN node
behind a large number of f1 packets. As a result, packets of
f2 perceive very high RTTs (16-20 seconds) and bear the full
brunt of excess queueing delays due to f1. Flow f2 continues
to badly underperform until f1 terminates. Flow fairness turns
out to be an important issue for web browsing performance,
since most browsers open multiple concurrent HTTP connec-
tions [19]. The implicit favouring of long-lived flows often has
the effect of delaying the “important” objects that the browser
needs to be able to start displaying the partially downloaded
page, leading to decreased user perception of performance.

IV. IMPROVING TCP PERFORMANCE WITH AN

INTERPOSED PROXY

A. Design Objectives and Motivation

Having identified the causes of poor TCP performance over
GPRS, we set out to determine whether the situation could be
improved. Our fundamental constraint was that we wanted
to improve performance without requiring any changes to be
made to the network protocol stacks of either the fixed or mo-
bile TCP end systems: Experience shows that the vast majority
of schemes that require such changes are doomed to never see
widespread deployment.

Instead, we focused on what could be achieved through the
use of a proxy located close to the wired-wireless network
boundary, able to see all traffic heading to and from the mo-
bile host. A ‘split TCP’ [6] approach was adopted, whereby the
proxy transparently divides the connection into two halves: one
from the fixed host to the proxy and the other from the proxy
to the mobile host. The TCP stacks on both the mobile and

1756

wired-facing sides of the proxy can be modified as necessary,
providing they can still communicate with conventional imple-
mentations. We can exploit the fact that the packet-input code
in all TCP stacks we have encountered will accept and process
all validly formed TCP packets it receives without concern as
to whether the transmitter is actually operating the congestion
control algorithms mandated in the various TCP RFCs.

Concentrating on the critical mobile downlink direction, the
goals for the proxy were as follows:

Improved Utilization – Failing to utilize the available band-
width on ‘long-thin’ links when there is data to send is clearly
wasteful.

Fairness – A ‘fair’ allocation of bandwidth to competing
flows regardless of their age or RTT.

Error Detection and Recovery – GPRS link performance
is characterised by occasional link stalls during hand-offs and
the occurrence of burst losses. A loss detection and recovery
scheme tailored for this environment might avoid unnecessary
backing-off or packet retransmission.

Effective Flow Control Mechanism – We wished to avoid
the problems with excessive buffering at the wired-wireless
gateway, and have the proxy take responsibility for effective
buffer management using ‘smart’ techniques.

B. TCP Flow Aggregation Mechanism

In conventional TCP implementations, every connection is
independent, and separate state information (such as srtt,
cwnd, ssthresh etc.) is kept for each. However, since all
TCP connections to a mobile host are statistically dependent
(since they share the same wireless link), certain TCP state in-
formation might best be shared between flows to the same mo-
bile host. On the wireless-facing side, our proxy treats flows
to the same mobile host as a single aggregate. The scheme
is depicted in figure 5. Hari Balakrishnan et al. [13] show that
flows can learn from each other and share information about the
congestion state along the network path, which they call shared
state learning. They use it as a basis for their congestion man-
ager.

On similar lines, our proxy can share state including a single
congestion window and RTT estimates across all TCP connec-
tions within the aggregate. Sharing state information enables
all the connections in an aggregate to have better, reliable, and
more recent knowledge of the wireless link. We therefore take
all the state information and group it together into one structure
that we call an Aggregate Control Block (ACB). All individual
TCP connections reference this structure as part of their local
state. Details of this structure are given in figure 6.

The wired-facing side of the proxy is known as the Aggre-
gateTCP (ATCP) client, while the mobile-facing side is called
the ATCP sender. The ATCP client receives packets into small
per-connection queues, that feed into a scheduler operating on
behalf of the whole aggregate. A single congestion window
for the whole aggregate is maintained, and whenever the level
of unacknowledged data on the wireless link drops one MSS
(Maximum Segment Size) below the size of the current con-
gestion window the scheduler selects a connection with queued
data from which a further segment will be sent. Of course,

S11

S12

MHn

Mobile Hosts

Base Station

Proxy (Co−located with Base Station)

Sn1

Sn2

Sn3

Scheduler
Per Aggregate

For MH1

For MHn
Aggregate_n

Aggregate_1

Fixed Hosts

(with Aggregate_1)
Flow Control

Flow Control
(with Aggregate_n)

(For GPRS, proxy close to CGSN node)

MH1

Fig. 5. Proxy based TCP flow aggregation scheme

while making the selection the scheduler must respect the mo-
bile host’s receive window for each of the individual flows.
Once transmitted, segments are kept in a queue of unacknowl-
edged data until ACK’ed by the mobile host. The ATCP sender
can perform retransmissions from this queue in the event of loss
being signalled by the mobile host, or from the expiry of the ag-
gregate’s retransmission timer.

The ATCP client employs ‘early ACKing’, acknowledging
most packets it receives from hosts as soon as they are ac-
cepted into the per-flow queues, before the destination end sys-
tem receives them. The practical effect this has on TCP’s end-
to-end semantics is mitigated by never using early acknowl-
edgement for FINs. Since the per-connection queues contain
re-assembled data, the proxy can sometimes coalesce multiple
small packets from the sender into a single segment by the time
it is sent over the wireless link. This can help to reduce protocol
header overhead.

AggregateTCP Clients

List of unacknowledged pkts

Scheduler

AggregateTCP Sender

To mobile host

Fig. 6. Sample logical aggregate in the proxy for a given MH

Our proxy can employ different connection scheduling
strategies depending on the nature of the incoming traffic.
Presently, we use a combination of priority-based and ticket-
based stride scheduling [11] to select which connection to trans-
mit from. This enables us to give strict priority to interactive
flows (such as telnet) while, for example, sharing out the re-
maining bandwidth in a fixed ratio between WWW and FTP
flows.

Within this framework, the proxy optimizes GPRS link per-
formance using three key mechanisms described in the follow-
ing sections.

1757

C. ATCP Sender congestion window strategy

A major cause of poor performance with TCP over GPRS is
link under utilization during the first few seconds of a connec-
tion due to the pessimistic nature of the slow start algorithm.

Slow start is an appropriate mechanism for the Internet in
general, but within the proxy, information is available with
which we can make better informed decisions as to congestion
window size.

The ATCP Sender uses a fixed size congestion window
(cwnd), shared across all connections in the aggregate. The
size is fixed to a relatively static estimate of the Bandwidth De-
lay Product (BDP) of the link. Thus, slow start is eliminated,
and further unnecessary growth of the congestion window be-
yond the BDP is avoided. We call this TCP cwnd clamping.

The underlying GPRS network ensures that bandwidth is
shared fairly amongst different users (or according to some
other QoS policy), and hence there is no need for TCP to be try-
ing to do the same based on less accurate information. Ideally,
the CGSN could provide feedback to the proxy about current
radio conditions and time slot contention, enabling it to adjust
the ‘fixed’ size congestion window, but in practice this is cur-
rently unnecessary.

Once the mobile proxy is successful in sending Cclamp

amount of data it goes into a self-clocking state in which it
clocks out one segment (from whatever connection the sched-
uler has selected) each time its receives an ACK for an equiv-
alent amount of data from the receiver. With an ideal value
of Cclamp, the link should never be under utilised if there is
data to send, and there should only ever be minimal queueing at
the CGSN gateway. Typically, the ideal Cclamp ends up being
around 30% larger than the value calculated by multiplying the
maximum link bandwidth by the typical link RTT. This excess
is required due to link jitter, use of delayed ACKs by the TCP
receiver in the mobile host, and ACK compression occurring
due to the link layer.

While starting with a fixed value of cwnd, the mobile proxy
needs to ensure that any initial packet burst does not overrun
CGSN buffers. Since the BDP of current GPRS links is small
(≈10KB), this is not a significant problem at this time. Future
GPRS devices supporting more downlink channels may require
the proxy to employ traffic shaping to smooth the initial burst
of packets to a conservative estimate of the link bandwidth. The
error detection and recovery mechanisms used by the ATCP
Sender are discussed in section IV-E.

D. ATCP Client flow control scheme

When the proxy ‘early ACKs’ a packet from a client it is
committing buffer space that can not be released until the packet
is successfully delivered to the mobile host. Hence, the proxy
must be careful how much data it accepts on each connection
if it is to avoid being swamped. Fortunately, it can control the
amount of data it accepts through the receive window it adver-
tises to hosts.

The proxy must try to ensure that sufficient data from con-
nections is buffered so that the link is not left to go idle un-
necessarily (for example, it may need to buffer more data from
senders with long RTTs – perhaps other mobile hosts), but also

limit the total amount of buffer space committed to each mobile
host. Furthermore, we wish to control the window advertised to
the sending host in as smooth a fashion as possible. Zero win-
dow advertisements should only be used as a last resort, for
example, during an extended wireless link stall.

Some studies in the past have investigated receiver adver-
tized window adaptation schemes. In [17], L. Kalampoukas
et al. present Explicit Window Adaptation (EWA), which con-
trols the end-to-end receiver advertized window size in TCP to
correspond to the delay-bandwidth product of the link. In this
scheme, active TCP connections are allowed to adapt automat-
ically to the traffic load, the buffer size and bandwidth-delay
product of the network without maintaining any per-connection
state. Likewise, L.L.H. Andrew et al. [18] propose a TCP flow-
control scheme that takes feedback available from an access
router to set the TCP receiver window. The scheme claims a
higher utilization for TCP flows while still preserving system
stability. Following a similar approach, we build on this flow
control scheme, utilising feedback available from the aggregate
about the wireless link performance.

Pseudocode for the Flow Control Algorithm

———————————————————————————–
process packet()
1. if (Wireless Link T imeout)
2. set wi(tk) = 0
3. send ack for packet
4. return
5. elseif (Connection Start Phase)
6. update si(tk), sa(tk)
7. if(si(tk) ≥ sa(tk))
8. set Connection Start Phase = 0
9. goto normal
10. endif
11. set wi(tk) = wi(tk−1) + C

12. send ack for packet
13. return
14. endif
15. update si(tk), Queue Occupancy

16. set fq = a ∗ Queue Occupancy − b

17. normal:
18. set wi(tk) = wi(tk−1) + (c − fq ∗ si(tk)) ∗ (tk − tk−1)
19. send ack for packet
20. return
————————————————————————–

The pseudo code for the flow control scheme is given. No-
tice the algorithm used during connection startup (denoted by
Connection Start Phase) is different from that used during the
later phase. During the connection start-phase, each received
packet is ACKed as early as possible and the advertised win-
dow is calculated as follows: Consider sa(tk) to be current av-
erage sending rate of the aggregate per connection and si(tk)
the running average of the sending rates over the wireless link
for connection i. We calculate si(tk) as a sliding window aver-
aging function given by:

si(tk) =
1
α

k∑

j=k−α

1
tj − tj−1

1758

where α is the window over which the average is calculated. By
controlling the value of α we achieve the desired ‘smoothing’
estimate for the sending rate. For GPRS links, the averaging
window can be small.

We consider the case of a single (first) TCP connection in
an aggregate. To start with, we can use an initial value of
advertized window of Winit = RTTinit × Sinit × β, where
(RTTinit × Sinit) corresponds to the bandwidth-delay product
of the GPRS downlink. A fixed GPRS-specific RTTinit value
can be used initially and later estimated (using appropriate es-
timation filters [22]), while Sinit – the initial sending rate can
also be intially estimated. β is the over-provision factor, and
gives control over an aggregate’s buffer target set-point. In ex-
periments, we have over-provisioned each aggregate buffer by
50% of the link BDP, which has ensured that there is always
sufficient data to avoid under-utilization of the GPRS link.

When more new connections join the aggregate (as typically
happens in web-sessions), any new connection ‘i’ will likely
satisfy the condition,

si(tk) < sa(tk)

and the advertised window will be set at:

wi(tk) = wi(tk−1) + C

where C is a function of maximum segment size (MSS),
and is calculated as max(MSS, Winit

n), where n is number of
connections in the aggregate at time tk. For the first adver-
tized window value for any connection, wi(tk−1) = 0, hence
wi(tk) = C. This ensures that new and small connections are
not discriminated against during the initial start phase by bring-
ing the connection up to the average sending rate of the aggre-
gate so that it achieves parity with other already ‘established’
connections. For those TCP flows that eventually have a send-
ing rate equal to or exceeding the average sending rate over the
GPRS link, the flow control algorithm described below takes
over.

The steady-state flow control algorithm advertises a window
size for connection i calculated using:

wi(tk) = wi(tk−1) + [µc − f(q(tk))si(tk)](tk − tk−1) (1)

where tk is the instant when the last packet was sent over
the wireless link for the ith connection. µc is the constant rate
at which the window increases and q(tk) is the overall queue
occupancy of the aggregate buffer (shown in the Pseudocode as
Queue Occupancy) at time instant tk.

Also the cost function f(q(tk)) is calculated as:

f(q(tk)) = aq(tk) − b (2)

where a and b are parameters which control the steady state
queue size. It can be shown through analysis that equilibrium
queue size qf approaches (b+c)/a (i.e. qf → b+c

a) [18]. The
scheme works as follows: whenever a packet for a particular
aggregate is received, the overall queue occupancy q(tk) for
that aggregate is sampled. The scheme then dynamically com-
putes the advertised window size (using equation 1) such that
as more connections join, overall aggregate queue occupancy

(q(tk)) starts to gradually increase while average sending rate
(si(tk)) for that connection starts to go down (recall that con-
nections are fairly scheduled in the aggregate). However, at
some point overall queue occupancy in the aggregate starts to
dominate, and as a consequence, lower values of window size
are advertised. Thus equation 1 allows advertized window wi to
grow at a constant rate µc, whereas the overall aggregate queue
occupancy terms (q(tk)) and sending rate (si(tk)) for a con-
nection in the aggregate reduce it. The whole process achieves
equilibrium (for all connections) in the steady state with a con-
stant window size that balances queue occupancy with a con-
stant growth rate. This in turn ensures availability of packets to
send without ever congesting the proxy.

As also shown in the pseudocode, the scheme is modified
to make use of feedback from the wireless link to a particular
mobile host from the aggregate. So in the case of link stalls,
a timeout at the wireless side (shown as Wireless Link Timeout
in pseudocode) would result in the advertised window wi being
set to zero. Upon recovery, we restore the previously advertized
window size. Normal flow control takes over after recovery
and brings the system state to equilibrium. This flow control
scheme works effectively to control the proxy’s buffer utiliza-
tion, and although a little elaborate for that required by current
GPRS networks should scale to much higher bandwidths, and
can be easily applied to other split TCP applications.

E. ATCP Sender error detection and recovery

Packet losses over a wireless link like GPRS can usually oc-
cur due to two reasons: (1) bursty radio losses that persist for
longer than the link-layer is prepared to keep retransmitting a
packet, and (2) during cell reselections due to cell update pro-
cedure (or routing area update) that can lead to a ‘link-stall’
condition from few to many seconds [28]. In both cases, con-
secutive packets in a window are frequently lost. TCP detects
these losses through duplicate ACKs, or timeouts in the extreme
case. Not knowing the ‘nature’ of the loss, it reacts by invok-
ing congestion control measures such as fast retransmit or slow
start. However, since the link frequently returns to a healthy
state after the loss, unnecessary back-off is often employed re-
sulting in under-utilization.

The split TCP aggregate approach of our proxy affords us
the opportunity of improved detection of the nature of wireless
losses, and hence make a better job of recovery. The aim is to
recover aggressively from transient losses, keeping the link at
full utilization, but be careful during extensive stalls or black-
outs not to trigger unnecessary retransmission.

TCP-SACK enables the receiver to inform the sender of
packets which it has received out of order. The sender can
then selectively retransmit in order to fill in the gaps. When
this feature is used along with the flow aggregation concept, it
gives us an elegant mechanism to discover sequence gaps across
the entire gamut of packets sent by the Aggregate TCP Sender,
and thereby improves our ability to determine the nature of the
loss. This improved diagnosis coupled with a recovery strat-
egy fine tuned for the wireless link results in good utilization.
The scheme is described further below, and figure 7 depicts a
snapshot of it in action.

1759

Unacknowledged Packets List:1 is oldest and 6 is newest

36 2 145

6 5 4 3 2 1

SACK for packet 5 arrives

6 5 4 3 2 1

6 5 4 23 1

Packets 1, 2 and 3 are lost in a bursty error period.
SACK for packet 4 arrives

sacked=1 sacked=1

sacked=0 sacked=0 sacked=0 sacked=0 sacked=0

sacked=0 sacked=1 sacked=0 sacked=0 sacked=0

sacked=0 sacked=1 sacked=1 sacked=0 sacked=0

SACK for packet 6 arrives

Retransmit packets with skipack=3

1 & 4

3 & 5

a
b
c

2 & 6

skipack=0 skipack=0 skipack=1 skipack=1 skipack=1

skipack=0 skipack=0 skipack=0 skipack=2 skipack=2

skipack=0

skipack=0 skipack=0skipack=0 skipack=0

Packets Connection

skipack=0
sacked=0

sacked=0
skipack=0skipack=0

sacked=1 sacked=0 sacked=0 sacked=0
skipack=3skipack=3skipack=3skipack=0skipack=0

skipack=2
sacked=0

Fig. 7. An example showing skipack scheme for error recovery

Normal Ack – The ACB maintains a list of unacknowledged
packets. Associated with each packet in the list is a field called
skipack. Whenever an ACK is received for a packet in the
list it is removed. The skipack variable of packets which were
sent before the acknowledged packet are then incremented. We
do this based on the observation that due to the nature of the
GPRS link-layer, packet re-ordering does not occur. We assume
packets belonging to the same connection are processed by the
mobile host in FIFO order. Thus, an ACK received for a newer
packet implies loss or corruption of older packets in the same
connection.

Bursty Error Period – When there is a bursty error period
on the wireless link, multiple packets will be lost. This will re-
sult in the generation of duplicate ACKs with SACK informa-
tion. Packets which are SACKed are marked so that they are not
retransmitted later by setting sacked = 1. UnSACKed pack-
ets (sacked = 0) sent before the packet which was SACKed
have their skipack counter incremented. The key point is that
this is done not for the packets of just that particular connec-
tion, but for the whole list of unacknowledged packets for the
aggregate. Thus when a dupack with SACK is received for a
particular connection the skipack counter for the packets of all
connections which were sent before that packet and have not
been SACKed are incremented. This is justified since sending

order is maintained during reception of ACKs.
However, care must be taken since TCP connections to a mo-

bile host are independent, so ACKs of packets for connections
sent later to the host might arrive before packets that were sent
earlier. This is not unusual as connections may be employing
delayed ACKs. However, if further such ‘early ACKs’ are re-
ceived, it is increasingly indicative of a transient loss necessi-
tating recovery. Our recovery strategy retransmits aggressively
during a transient loss: We wait for the skipack counter to
reach 3 then retransmit all packets having this value in the list.
A higher skipack retransmit counter value would make the re-
covery scheme less agile, while lowering its value would result
in redundant retransmissions. Empirically, a value of 3 seems
to work well for the characteristics of GPRS.

Timeouts – Bursty error periods tend to be short compared
to round trip times. As described above, if the skipack counter
reaches 3 we can recover from a loss without resorting to an ex-
pensive timeout. Hence by keeping the timeout value relatively
conservative, we can avoid timeouts after bursty error periods.
Thus, timeouts only occur during extensive blackouts or link
stalls. It would be highly wasteful to keep transmitting dur-
ing a link blackout (for e.g. due to deep fading or during cell-
reselection) since a large proportion of the packets will likely
be lost. Hence after a timeout the cwnd is reduced to one. A
single packet is transmitted until an ACK is received. Once an
ACK is received the cwnd is set back to the original size since
the reception of the ACK implies restoration of the link. Hence
after the first timeout, the timeout value is made aggressive by
setting it to 1.5 × RTT . Thus, after a timeout the single packet
being transmitted is effectively a ‘probe’ packet, and we should
resume normal operation as soon as the link recovers. Hence
instead of exponentially backing off, a more aggressive timeout
value (linear backoff) is used to enable quick detection of link
recovery.

Recovery strategy – In normal TCP, 3 duplicate ACKs trig-
ger fast retransmit. On our link, reception of duplicate ACKs
signifies that the link is currently in an operational state. Appli-
cation of fast retransmit would result in unnecessary back-off
and hence under-utilisation. Hence, we maintain cwnd at the
same value – packets whose skipack counter has reached 3 are
simply retransmitted.

V. EXPERIMENTAL TEST SET-UP

Our experimental test bed for evaluating the transparent
proxy is shown in figure 8. The mobile terminal was connected
to the GPRS network via a Motorola T260 GPRS phone (3
downlink channels, 1 uplink). Tests were performed with dif-
ferent mobile terminals, using Linux 2.4, Windows 2000 and
WinCE 3.0. Vodafone UK’s GPRS network was used as the
infrastructure.

Base stations are linked to the SGSN (Serving GPRS Support
Node) which is connected to a GGSN (Gateway GPRS Support
node). Both the SGSN and GGSN nodes are co-located in a
CGSN (Combined GPRS Support Node) in the current Voda-
fone configuration [31].

Since we were unable to install equipment next to the CGSN
we made use of a well provisioned IPSec VPN tunnel to route
all traffic via the Computer Laboratory. The proxy was then

1760

BACKBONE NETWORK
SERVICE PROVIDER’s

�
�
�
�

�
�
�
�

PUBLIC
INTERNET

BSC

BS

BS

SGSN

CGSN

ROUTER
GPRS Edge

Gb

GGSN

Gn

Gi

Router
Edge

Mobile Proxy
Radius Server

Cambridge Computer Laboratory
Firewall

PPP−over−bluetooth
PPP−over−serial

Application Server

Sufficiently Provisioned
IPSec VPN

��
��
��
��

��
��
��
��

����

������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Fig. 8. Experimental Test Bed Set-up

located at the end of the tunnel, with routing configured so that
all packets flowing to and from the mobile host are passed to
it for processing. Packets arriving at the proxy that are to/from
hosts in the mobile host address range are passed to the user-
space proxy daemon by means of Linux’s netfilter [32] module.

In the test described, a number of different remote ‘fixed’
hosts were used, some located in the Lab, some elsewhere on
the public Internet, and others were in fact other mobile hosts.

VI. EXPERIMENTAL RESULTS

In this section, we discuss some preliminary results from ex-
periments conducted over the GPRS testbed using our proxy.
We evaluate how our transparent proxy achieves its goals of:
faster flow startup; higher down-link utilization; improved fair-
ness (and controllable priority); reduced queuing delays; and
better loss recovery.

A. Higher Downlink Utilization

To quantify the benefits of avoiding slow-start for short TCP
sessions, we performed a series of short (5KB-30KB) down-
loads from a test server that reflect web session behaviour. Each
transfer for a given size was repeated 25 times, with traces
recorded using tcpdump and later analysed.

4

5

6

7

8

9

10

11

12

13

14

0 5 10 15 20 25 30 35

T
ra

ns
fe

r
T

im
e(

se
cs

)

Transfer Size(KB)

TCP clamp (cwnd=10KB)
TCP

Fig. 9. Results of the ttcp download transfers conducted over GPRS net-
work. Plot shows the transfer times for different transfer sizes with and without
the proxy. The error bars correspond to the standard deviation. Each transfer
test was repeated 25 times for a given size.

Figure 9 plots the transfer times with and without the mobile
proxy. The times shown include the full TCP connection estab-
lishment and termination overhead, which constitutes a signifi-
cant fraction of the overall time for shorter transfers. However,
the clamped congestion window (Cclamp around 10KB in this
case) can be seen to still yield clear performance benefits.

The results reported above were performed using a mobile
host running Linux 2.4, where we noted that the performance
gain was less than with other platforms. This is due to Linux of-
fering an initial receive window of just 5392 bytes. When used
with a normal TCP sender, Linux expands the window suffi-
ciently quickly for it to never be the limiting factor. However,
since we skip slow start there is not time for the window to grow
and it thus limits the quantity of data we can initially inject into
the network, and hence we do not quite achieve our goal of full
link utilization. We considered sending further data ‘optimisti-
cally’, but rejected the idea as distasteful, and a potential source
of compatibility problems.

Even with the Linux 2.4 receiver, the proxy provides sig-
nificant performance gains for short lived flows as are preva-
lent with HTTP/1.0 transfers. This benefit is maintained and
even enhanced when using HTTP/1.1 persistent TCP connec-
tions [8]. When using persistent connections it is normally
the case that the server has to let the TCP connection go idle
between object transfers since ‘pipelining’ is rarely supported.
Normally this results in the congestion window being set back
to its initial two segment value. The proxy avoids this, and the
resultant benefit is more pronounced due to the lack of connec-
tion establishment and termination phases.

0

50000

100000

150000

200000

250000

300000

0 10 20 30 40 50 60 70

S
e
q
u
e
n
c
e
 O

ff
s
e
t

Time (sec)

0

20000

40000

60000

80000

100000

120000

0 10 20 30 40 50 60 70 80

S
e
q
u
e
n
c
e
 O

ff
s
e
t

Time (sec)

0

50000

100000

150000

200000

250000

0 10 20 30 40 50 60 70 80

S
e
q
u
e
n
c
e
 O

ff
s
e
t

Time (sec)

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70

S
e
q
u
e
n
c
e
 O

ff
s
e
t

Time (sec)

Fig. 10. The plot on the top left show the TCP sender side sequence and ack-
sequence number time plot for a transfer, with a second connection (top right
plot) initiated after 20 seconds, without using the proxy. The bottom left and
right plot is a repeat but using our mobile proxy.

B. Achieving Fairness between Connections

We configured the proxy to distribute equal tickets to incom-
ing flows and hence demonstrate that fairness can be achieved
between multiple connections. In the following experiments,
we initiated one transfer, then started a second 20 seconds later.

1761

Without the proxy, the top half of figure 10 shows the sec-
ond flow taking a long time to connect, and then suffering very
poor performance; it makes little progress until the first flow
terminates at time 60 seconds. With the proxy, the second flow
connects quickly, then receives a fair share of the bandwidth.
The bottom left graph shows the bandwidth to the first flow be-
ing halved during the duration of the second flow. Thus, the
proxy works as expected, enabling interactive applications to
make progress in the face of background bulk transfers such as
FTP.

C. Reduced Queueing

In these tests, we demonstrate how the proxy can achieve
reduced queueing (and hence RTT) while maintaining high
throughput. A 600KB file is downloaded with and without the
proxy. To demonstrate the effect the congestion window has on
performance, the experiment has been repeated with the proxy
configured such that it uses a static window of various nomi-
nated sizes. The experiments were performed under ideal radio
conditions so as to minimise chances of packet loss.

cwnd=4k
cwnd=10k
cwnd=12k
cwnd=16k
cwnd=32k

nocwnd

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

00:00 01:00 02:00 03:00 04:00 05:00 06:

O
u
ts

ta
n
d
in

g
 D

a
ta

 (
b
y
te

s
)

Time(min)

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

00:00 01:00 02:00 03:00 04:00 05:00 06:

R
T

T
 (

m
s
)

Time(min)

cwnd=4k
cwnd=10k
cwnd=12k
cwnd=16k
cwnd=32k

nocwnd

Fig. 11. Figures showing (a) Outstanding (inflight) TCP data and (b) sender
perceived RTTs during a 600KB file transfer. Queueing delay can be reduced
by clamping the congestion window without effecting throughput.

Figure 11(a) shows that under these conditions the transfer
takes 155 seconds with any window size greater than equal to
10KB. Below this size, the link is under utilized and through-
put drops. If the window size is increased beyond 10KB the
level of queueing increases, approaching that of the case with-
out the proxy for a window size of 32KB. Figure 11(b) shows
how these queues translate into elevated RTT.

D. Faster Recovery

We developed our TCP aggregate error recovery scheme us-
ing NS2 simulation of test cases. Further work to provide
a thorough real-world evaluation of the scheme is on-going.
Here, we show the implementation’s response to a simple loss
scenario (see figure 12). Around 90 seconds into a file trans-
fer the link stalls, presumably due to a cell hand-off. A single
retransmission occurs, and then the link recovers swiftly. This
should be compared with the similar scenario without the proxy
previously shown in figure 3 – recovery is significantly quicker.

VII. RELATED WORK

The academic literature contains a plethora of solutions for
elevating performance over wireless links. Berkeley’s SNOOP
[14], delayed dupAcks scheme [26], M-TCP [23], I-TCP [20],

Timeout

Link condition deteriorates
after recovery from timeouts

Higher Perceived RTTs

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

00:0000:00 01:0001:00 02:0002:00 03:0003:00

R
T

T
 (

m
s
)

rtt

Time(min)

Retransmit

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

00:0000:00 01:0001:00 02:0002:00 03:0003:00

O
u
ts

ta
n
d
in

g
 D

a
ta

 (
b
y
te

s
)

Time(min)

Retransmit

Ack Trace

Receiver Adv. Window

0

100000

200000

300000

400000

500000

600000

700000

00:0000:00 01:0001:00 02:0002:00 03:0003:00

S
e
q
u
e
n
c
e
 O

ff
s
e
t

Time(min)

Average Throughput

1000

1500

2000

2500

3000

3500

4000

00:0000:00 01:0001:00 02:0002:00 03:0003:00

T
h

r
o
u

g
h

p
u

t
(b

y
te

s/
se

c
)

Time (min)

Fig. 12. Swift recovery from TCP timeout during a 600KB file transfer while
using the proxy. Plots showing (top-left and clockwise) (a) RTT plot of TCP
timeout (b) Outstanding (inflight) data (c) receiver perceived throughput and
(d) sender trace.

Freeze-TCP [25], FDA [27], W-TCP [16], WTCP [24] and TCP
Westwood [21] are some of the more important ones. Careful
examination of existing schemes suggests four broadly differ-
ent approaches: link-layer based schemes (both TCP aware and
unaware) (e.g. [14], [26]), split connection based approaches
(e.g. I-TCP [20], W-TCP [16]) and early warning based ap-
proaches (e.g. FreezeTCP [25]) and finally those necessitating
end system changes (e.g. WTCP [24], Freeze-TCP [25], TCP
Westwood [21]).

Snoop [14] is a TCP aware link-layer scheme that ‘sniffs’
packets in the base station and buffers them. If duplicate ac-
knowledgements are detected, incoming packets from the mo-
bile host are retransmitted if they are present in a local cache.
On the wired side, dupacks are suppressed from the sender, thus
avoiding unnecessary fast retransmissions and the consequent
invocation of congestion control mechanisms. End-to-end se-
mantics are preserved. However, when bursty errors are fre-
quent, the wired sender is not completely shielded, leading to
conflicting behaviour with TCP’s retransmission mechanisms.

The Snoop protocol scheme was originally designed for
wireless LANs rather than ‘long-thin’ wide-area wireless links.
As such, it does not address the problems of excess queueing
at base stations or proxies. Jian-Hao et. al. developed FDA
[27], which uses a Snoop-like strategy, but uses a novel flow-
control scheme which goes some way to prevent excess queue-
ing. Further, Snoop’s link layer retransmissions and suppres-
sion of ACKs can inflate the TCP sender’s RTT estimates and
hence its timeout value, adversely affecting TCP’s ability to de-
tect error free conditions.

Delayed DupAcks [26] is a TCP unaware link-layer scheme:
it provides lower link-layer support for data retransmissions and
a receiver or mobile host side TCP modification that enables
the receiver to suppress DupAck’s for some interval d when
packet(s) are lost over radio. However, interval d is difficult to
determine as it depends on frequency of losses over the wire-

1762

Proposals SNOOP[14] M-TCP[23] & Freeze-TCP[25] FDA[27] WTCP[24] W-TCP[16] TCP Westwood [21] Our approach
I-TCP[20]

TCP change in
end-systems required × × √ × √ × √ ×

Avoids Excess Queuing
at Proxy/Base Station × × × √ √ × √ √

Faster Start-up
for short flows × × × × √ × × √

Maintains TCP Fairness
for all types TCP flows × × × × × × × √

Handle variable bit
error environment

√ √ √ × √ √ √ √
Handle small
link “stalls” × √ × × √ √ √ √

Quick Recovery from
Long Disconnections × √ √ × × √ × √
Maintains End-to-End

Protocol Semantics
√ × √ √ √ √ √ ×

TABLE I
FEATURE COMPARISION OF WIRELESS TCP SOLUTIONS [YES (

√
), NO (×)]

less medium. The base station is not TCP aware, thus a re-
ceiver can not determine whether a loss is due to radio errors or
congestion, which can force the sender to timeout in such sit-
uations. Further, DupAck bursts can also aggravate congestion
over wire-line links that have high BDP.

The second broad approach is to split the TCP connection
into two sections. This allows wireless losses to be completely
shielded from the wired ones. I-TCP [20] uses TCP over the
wireless link albeit with some modifications. Since TCP is not
tuned to the wireless link, it often leads to timeouts eventually
causing stalls on the wired side. Due to the timeouts, valuable
transmission time and bandwidth is also wasted. I-TCP could
also run short of buffer space during periods of extended time-
outs due to the lack of an appropriate flow control scheme.

M-TCP [23] is similar to I-TCP except it better preserves
end-to-end semantics. M-TCP uses a simple zero window ACK
scheme to throttle transmission of data from the wired sender.
This leads to stop-start-stop bursty traffic on the wired connec-
tion, and the lack of buffering in the proxy can lead to link
under-utilization for want of packets to send. Holding back
ACKs also affects sender’s RTT estimates, affecting TCP’s abil-
ity to recover from non-wireless related packet losses.

Ratnam and Matta propose W-TCP [16], which also splits
the connection at the base station. However, it acknowledges a
packet to the sender only after receiving an acknowledgement
from the mobile host. W-TCP changes the timestamp field in
the packet to account for the time spent idling at the base sta-
tion. Retransmission characteristics have been adjusted to be
aggressive on the wireless side so that the link is not under-
utilised.

WTCP [24] is an end-to-end scheme which primarily uses
inter-packet separation as the metric for rate control at the re-
ceiver. Congestion related loss detection is also provided as a
backup mechanism. The biggest drawback of WTCP is that it
entails changes at both the wired sender and the mobile host.
Even if a receiver side change can be envisaged, widespread
adoption by wired senders seems unlikely.

TCP Westwood [21] is a scheme that improves TCP perfor-
mance under random and sporadic losses, by desisting from
overly shrinking the congestion window on packet loss. It does

so by simultaneously estimating end-to-end bandwidth avail-
able to TCP, and uses it as a feedback measure to control the
congestion window. However, it requires modification to TCP
at the end-system.

The third broad approach identified covers schemes that use
various kinds of early warning signals. Freeze TCP uses Zero
Window Probes (ZWP) like M-TCP, but is proactive since the
mobile host detects signal degradation and sends a Zero Win-
dow Warning Probe. The warning period i.e. the time before
which actual degradation occurs should be sufficient for the
ZWP to reach the sender so that it can freeze its window. The
warning period is estimated on the basis of RTT values. One
pitfall is the reliability of this calculation and Freeze-TCP’s in-
ability to deal with sudden random losses. Furthermore, Freeze-
TCP requires end-system changes.

VIII. CONCLUSIONS

In this paper we have proposed a flow aggregation scheme
to transparently enhance performance of TCP over wide area
wireless links such as GPRS. The proposed scheme was imple-
mented in a split TCP proxy and evaluated on a GPRS network
testbed. The key features of the scheme are summarised be-
low:

• During connection startup, slow start is avoided, thus
quickly bringing the link up to full utilization, to the par-
ticular benefit of WWW sessions.

• Error recovery is improved due to the extension of the
SACK mechanism to cover the entire aggregate. Losses
are detected faster and recovery is done without unneces-
sary backoff.

• The flow control algorithm manages proxy buffer space to
ensure sufficient data is buffered to keep the wireless link
fully utilised, but trys to adjust flows smoothly, and limits
the buffer space committed to each mobile host.

• Scheduling of packets in the aggregate allows fair band-
width allocation to flows, regardless of duration.

IX. CURRENT LIMITATIONS AND FUTURE WORK

We are currently considering ways of improving our wireless
link BDP estimation algorithm. Although not particularly criti-

1763

cal for GPRS where the BDP stays roughly constant even under
changing radio conditions and during cell re-selections (and/or
routing-area updates), we feel that a more dynamic scheme may
be required for next generation EDGE and UMTS (3G) sys-
tems. Calculating the BDP of the aggregate in a similar manner
to that employed by TCP Vegas or Westwood seems a promis-
ing approach.

We have used the proxy with only a limited set of concur-
rent clients. It would be interesting to perform tests (part of
our ongoing work) to identify how well the transparent proxy
scales to a wider client base. We are recording tcpdump traces
of all GPRS traffic generated by our user community, which
will assist in evaluating system scalability and resulting user
experience from using the proxy.

Work is also ongoing to perform more thorough evaluation
of the flow control and error recovery schemes, using a com-
bination of simulation and empirical analysis of the long-term
packet traces we are collecting. Fine tuning of the scheme is
bound to result.

Our current work has concentrated on the downlink direc-
tion as we perceive this as being the most critical direction for
performance of most applications. We are considering how the
split TCP approach could be used to improve the uplink, but the
options without modifying the mobile host are rather more lim-
ited. Fortunately, vanilla uplink performance does not exhibit
many of the gross issues posed by the downlink.

ACKNOWLEDGMENTS

We wish to thank Vodafone Group R&D, Sun Microsystems
Inc. and BenchMark Capital for supporting this work. Thanks
also go to Tim Harris for comments on an earlier version of this
paper and the INFOCOM’03 reviewers for their constructive
input.

REFERENCES

[1] G. Brasche and B. Walke, “Concepts, Services and Protocols of the New
GSM Phase 2+ General Packet Radio Service”, IEEE Communications
Magazine, August 1997.

[2] B. Walke, Mobile Radio Networks, Networking and Protocols (2. Ed.),
John Wiley & Sons, Chichester 2001

[3] C. Bettssetter, H. Vogel and J. Eberspacher, “GSM Phase 2+ General
Packet Radio Service GPRS: Architecture, Protocols, and Air Interface”,
IEEE Communication surveys Third Quater 1999, Vol.2 No.3.

[4] Michael Meyer, “TCP Performance over GPRS”, In Proceedings of IEEE
WCNC, pages 1248-1252, 1999

[5] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden and A. Joseph, “Multi-Layer
Tracing of TCP over a Reliable Wireless Link”, In Proceedings of ACM
SIGMETRICS 1999.

[6] O. Spatscheck, J. Hansen, J. Hartman and L. Peterson, “Optimizing TCP
Forwarder Performance”, IEEE/ACM Transactions on Networking, Vol. 8,
No. 2., April 2000

[7] R. Chakravorty, J. Cartwright and I. Pratt, “Practical Experience With TCP
over GPRS”, In Proceedings of IEEE GLOBECOM 2002, November 17-
21, Taipei, Taiwan
Source: http://www.cl.cam.ac.uk/users/rc277/gprs.html

[8] R. Chakravorty and I. Pratt, “WWW Performance over GPRS”, in Proceed-
ings of the IEEE International conference in Mobile and Wireless Com-
munications Networks (IEEE MWCN 2002), September 9-11, Stockholm,
Sweden
Source: http://www.cl.cam.ac.uk/users/rc277/gprs.html

[9] R. Chakravorty and I. Pratt, “Performance Issues with General Packet Ra-
dio Service”, to appear in IEEE/KICS Journal of Communication and Net-
works (JCN), Special Issues on “Evolving from 3G deployment to 4G def-
inition”, 2003.
Source: http://www.cl.cam.ac.uk/users/rc277/gprs.html

[10] D. Dutta and Y. Zhang, ”An Active Proxy Based Architecture for TCP
in Heterogeneous Variable Bandwidth Networks”, In Proceedings of IEEE
GLOBECOM, November 2001.

[11] C. Waldspurger and W. Weihl, “Stride Scheduling: Determin-
istic Proportional-Share Resource Management”, Technical Report
MIT/LCS/TM-528.

[12] H. Balakrishnan, V. N. Padmanabhan, S. Seshan and R. H. Katz, “A Com-
parison of Mechanisms for Improving TCP Performance over Wireless
Links”, IEEE/ACM Trans. on Networking, Vol. 5, No.6, Dec. 1997.

[13] H. Balakrishnan, H. Rahul, and S. Seshan, “An Integrated Congestion
Management Architecture for Internet Hosts”, In Proceedings of ACM
SIGCOMM 1999.

[14] H. Balakrishnan, R. Katz and S. Seshan, “Improving TCP/IP performance
over Wireless Networks”, In Proceedings of ACM MOBICOM, November
1995

[15] L. Zhang, S. Shenker and D. Clark, “Observations on the Dynamics of a
Congestion Control Algorithm: The Effects of Two-Way Traffic”, In Pro-
ceedings of ACM SIGCOMM 1991.

[16] K. Ratnam and I. Matta, “W-TCP: An Efficient Transmission Control Pro-
tocol for Networks with Wireless Links”, In Proceedings of Third IEEE
Symposium on Computer and Communications (IEEE ISCC), 1998.

[17] L. Kalampoukas, A. Varma and K. K. Ramakrishnan, “Explicit Window
Adaptation: A Method to Enhance TCP Performance”, In Proceedings of
INFOCOM 1998

[18] L. L.H. Andrew, S. Hanly and R. Mukthar, “Analysis of a Flow Control
Scheme for Rate Adjustment by Managing flows”, In Proceedings of the
4th Asian Control Conference, September 25-27, 2002, Singapore
Source: http://www.ee.mu.oz.au/staff/lha/LAicp.html

[19] Z. Wang and P. Cao, “Persistent Connection Behaviour of Pop-
ular Browsers”, Source: http://www.cs.wisc.edu/cao/papers/persistent-
connection.html

[20] A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for mobile hosts”, In
Proc. of the 15th IEEE International Conference on Distributed Computing
Systems, pages 136-143, Vancouver, BC, May 1995.

[21] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, “TCP
Westwood: Bandwidth Estimation for Enhanced Transport over Wireless
Links”, In Proceedings of ACM Mobicom 2001

[22] M. Kim and B. D. Noble, “Mobile network estimation”, In Proceedings
of the ACM MOBICOM 2001

[23] K. Brown and S. Singh, “M-TCP: TCP for Mobile Cellular Networks ”,
ACM Computer Communication Review, 1997

[24] P. Sinha, N. Venkitaraman, R. Sivakumar and V. Bhargavan, “WTCP: A
Reliable Transport Protocol for Wireless Wide-Area Networks”, In Pro-
ceedings of ACM MOBICOM 1999.

[25] T. Go , J. Moronski, D. S. Phatak and V. Gupta, “Freeze-TCP: A true end-
to-end enhancement mechanism for mobile environments,” In Proceedings
of IEEE INFOCOM 2000, Israel.

[26] V. Bakshi, P. Krishna, N. H. Vaidya and D. K. Pradhan, “Improving Per-
formance of TCP over Wireless Networks”, Texas A&M University Tech.
Report TR-96-014, May 1996

[27] Jian-Hao Hu and K. L. Yeung, “FDA: A Novel Base Station Flow Control
Scheme for TCP over Heterogeneous Networks”, In Proceedings of IEEE
INFOCOM 2001

[28] A. Gurtov, M. Passoja, O. Aalto and M. Raitola, “Multi-Layer Protocol
Tracing in a GPRS Network”, In Proceedings of the IEEE Vehicular Tech-
nology Conference (Fall VTC2002), Vancouver, Canada, Sepember 2002.

[29] P. Stuckmann, N. Ehlers and B. Wouters, “GPRS Traffic Performance
Measurements”, In Proceedings of the IEEE Vehicular Technology Con-
ference (Fall VTC 2002), Vancouver, Canada, Sepember 2002.

[30] J. Cartwright, “GPRS Link Characterization”,
Source: http://www.cl.cam.ac.uk/users/rc277/linkchar.html

[31] “An Introduction to the Vodafone GPRS Environment and Supported Ser-
vices”, Issue 1.1/1200, December 2000, Vodafone Ltd., 2000.

[32] The Linux NetFilter Homepage, http://www.netfilter.org
[33] tcpdump(http://www.tcpdump.org),

tcptrace(http://www.tcptrace.org),
ttcp+(http://www.cl.cam.ac.uk/Research/SRG/netos/netx/)

1764

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

